Nonlinear Signal Models : Geometry , Algorithms , and Analysis by Chinmay Hegde
نویسندگان
چکیده
Traditional signal processing systems, based on linear modeling principles, face a stifling pressure to meet present-day demands caused by the deluge of data generated, transmitted and processed across the globe. Fortunately, recent advances have resulted in the emergence of more sophisticated, nonlinear signal models. Such nonlinear models have inspired fundamental changes in which information processing systems are designed and analyzed. For example, the sparse signal model serves as the basis for Compressive Sensing (CS), an exciting new framework for signal acquisition. In this thesis, we advocate a geometry-based approach for nonlinear modeling of signal ensembles. We make the guiding assumption that the signal class of interest forms a nonlinear low-dimensional manifold belonging to the high-dimensional signal space. A host of traditional nonlinear data models can be essentially interpreted as specific instances of such manifolds. Therefore, our proposed geometric approach provides a common framework that can unify, analyze, and significantly extend the scope of nonlinear models for information acquisition and processing. We demonstrate that the geometric approach enables new algorithms and analysis for a number of signal processing applications. Our specific contributions include: (i) new convex formulations and algorithms for the design of linear systems for data acquisition, compression, and classification; (ii) a general algorithm for reconstruction, deconvolution, and denoising of signals, images, and matrix-valued data; (iii) efficient methods for inference from a small number of linear signal samples, without ever resorting to reconstruction; and, (iv) new signal and image representations for robust modeling and processing of large-scale data ensembles.
منابع مشابه
Random Projections for Manifold Learning: Proofs and Analysis
We derive theoretical bounds on the performance of manifold learning algorithms, given access to a small number of random projections of the input dataset. We prove that with the number of projections only logarithmic in the size of the original space, we may reliably learn the structure of the nonlinear manifold, as compared to performing conventional manifold learning on the full dataset.
متن کاملA Nearly-Linear Time Framework for Graph-Structured Sparsity
We introduce a framework for sparsity structures defined via graphs. Our approach is flexible and generalizes several previously studied sparsity models. Moreover, we provide efficient projection algorithms for our sparsity model that run in nearly-linear time. In the context of sparse recovery, our framework achieves an informationtheoretically optimal sample complexity for a wide range of par...
متن کاملFast Algorithms for Structured Sparsity
Sparsity has become an important tool in many mathematical sciences such as statistics, machine learning, and signal processing. While sparsity is a good model for data in many applications, data often has additional structure that goes beyond the notion of “standard” sparsity. In many cases, we can represent this additional information in a structured sparsity model. Recent research has shown ...
متن کاملA Theoretical Analysis of Joint Manifolds
The emergence of low-cost sensor architectures for diverse modalities has made it possible to deploy sensor arrays that capture a single event from a large number of vantage points and using multiple modalities. In many scenarios, these sensors acquire very high-dimensional data such as audio signals, images, and video. To cope with such high-dimensional data, we typically rely on low-dimension...
متن کاملIterative Thresholding for Demixing Structured Superpositions in High Dimensions
We consider the demixing problem of two (or more) high-dimensional vectors from nonlinear observations when the number of such observations is far less than the ambient dimension of the underlying vectors. Specifically, we demonstrate an algorithm that stably estimate the underlying components under general structured sparsity assumptions on these components. Specifically, we show that for cert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012